Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin.
نویسندگان
چکیده
Arrestin blocks the interaction of rhodopsin with the G protein transducin (G(t)). To characterize the sites of arrestin that interact with rhodopsin, we have utilized a spectrophotometric peptide competition assay. It is based on the stabilization of the active intermediates metarhodopsin II (MII) and phosphorylated MII by G(t) and arrestin, respectively (extra MII monitor). The protocol involves native disc membranes and three sets of peptides 10-30 amino acids in length spanning the arrestin sequence. In the absence of arrestin, not one of the peptides by itself had an effect on the amount of MII formed. However, inhibition of arrestin-dependent extra MII was found for the peptides at residues 11-30 and 51-70 (IC(50) < 100 microm) and residues 231-260 (IC(50) < 200 microm). A similar pattern of inhibition by arrestin peptides was seen when arrestin was replaced by G(t) or the farnesylated G(t)gamma C-terminal peptide. Only arrestin-(11-30) inhibited MII.G(t) less (IC(50) = 300 microm) than phosphorylated MII.arrestin. We interpreted the data by competition of the arrestin peptides for interaction sites at rhodopsin, exposed in the MII conformation and specific for both arrestin and G(t). The arrestin sites are located in both the C- and N-terminal domains of the arrestin structure.
منابع مشابه
Light-induced conformational changes of rhodopsin probed by fluorescent alexa594 immobilized on the cytoplasmic surface.
A novel fluorescence method has been developed for detecting the light-induced conformational changes of rhodopsin and for monitoring the interaction between photolyzed rhodopsin and G-protein or arrestin. Rhodopsin in native membranes was selectively modified with fluorescent Alexa594-maleimide at the Cys(316) position, with a large excess of the reagent Cys(140) that was also derivatized. Mod...
متن کاملArrestin can act as a regulator of rhodopsin photochemistry
We report that visual arrestin can regulate retinal release and late photoproduct formation in rhodopsin. Our experiments, which employ a fluorescently labeled arrestin and rhodopsin solubilized in detergent/phospholipid micelles, indicate that arrestin can trap a population of retinal in the binding pocket with an absorbance characteristic of Meta II with the retinal Schiff-base intact. Furthe...
متن کاملMechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin.
Quenching of phototransduction in retinal rod cells involves phosphorylation of photoactivated rhodopsin by the enzyme rhodopsin kinase followed by binding of the protein arrestin. Although it has been proposed that the mechanism of arrestin quenching of visual transduction is via steric exclusion of transducin binding to phosphorylated light-activated rhodopsin (P-Rh*), direct evidence for thi...
متن کاملPhosphorylated rhodopsin and heparin induce similar conformational changes in arrestin.
Photoactivated rhodopsin is quenched upon its phosphorylation in the reaction catalyzed by rhodopsin kinase and the subsequent binding of a regulatory protein, arrestin. We have found that heparin and other polyanions compete with photoactivated, phosphorylated rhodopsin to bind arrestin (48-kDa protein, S-antigen). This is shown (a) by the suppression of stabilized metarhodopsin II; (b) by cha...
متن کاملLight-Dependent Redistribution of Arrestin in Vertebrate Rods Is an Energy-Independent Process Governed by Protein-Protein Interactions
In rod photoreceptors, arrestin localizes to the outer segment (OS) in the light and to the inner segment (IS) in the dark. Here, we demonstrate that redistribution of arrestin between these compartments can proceed in ATP-depleted photoreceptors. Translocation of transducin from the IS to the OS also does not require energy, but depletion of ATP or GTP inhibits its reverse movement. A sustaine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 48 شماره
صفحات -
تاریخ انتشار 2000